Solving Problems Involving Newton's Laws of Motion

1. Draw a Diagram

Write down the given quantities (adopt a notation)

Write down a symbol for what you are looking for

Translate English \rightarrow **Mathematics**

Choose a convenient coordinate system to simplify the problem

Draw a picture of the problem, labeling it with symbols

2. Draw a Free-Body Diagram

Isolate the object(s) of interest

Replace all strings, springs, surfaces, etc. with vectors representing the forces they exert ON the object

The third law may help you identify some of the forces

3. Identify the Acceleration

Identify (and if necessary calculate) the acceleration of the object(s) of interest

4. Apply Newton's Laws of Motion

Apply the vector equations:

$$a = F_{net} / m$$

5. Solve For The Unknown Quantities

6. Check the Results

There is often more than one way to solve the problem!

Solving Problems Involving Conservation Laws

1. Draw a Diagram

Write down the given quantities (adopt a notation) Write down what you are looking for Choose a convenient coordinate system

- 2. Choose a System/Draw a Free-Body Diagram
 Isolate the system of particles of interest
 Replace all strings, springs, surfaces, etc. with
 vectors representing the forces they exert ON the object
- 3. Identify the Appropriate Conservation Laws $F_{net} = 0 \rightarrow Conservation \ of \ Linear \ Momentum$ $Conservative \ Forces \rightarrow \Delta E = 0 \ (E = K + PE)$ $Non-Conservative \ Forces \rightarrow W_{nc} = \Delta E$
- 4. Apply Conservation Law(s)

Vector Form: $P_i = P_f$ Scalar Form: $E_i = E_f$

- 5. Solve For The Unknown Quantities
- 6. Check the Results

Make sure the conservation law is obeyed!